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Endoscopic ultrasound-guided tissue acquisition: Needle types, 
technical issues, and sample handling
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A  B  S  T  R  A  C  T

Endoscopic ultrasound (EUS)-guided tissue acquisition is an established method for the pathologic diagnosis of solid pancreatic masses due to its 
high accuracy and safety. Currently, EUS-guided biopsy is applied to any lesions adjacent to the gastrointestinal tract that can be visualized with 
EUS. In this review, conventional and novel types of needles for EUS-guided tissue acquisition are introduced and their diagnostic performance is 
compared. In addition, technical issues and sampling handling methods to improve diagnostic accuracy are discussed.
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Introduction

Endoscopic ultrasound-guided fine needle aspiration biopsy 
(EUS-FNAB) is a pivotal method for the pathologic diagnosis 
of solid pancreatic masses due to its high accuracy and safety.1 
EUS-FNAB is now applied to any lesions adjacent to the gastro-
intestinal tract that can be visualized with EUS. In the past, only 
cytological evaluations were performed through EUS-guided fine 
needle aspiration (EUS-FNA), but some lesions require an evalu-
ation of tissue architecture, including immunohistochemical 
staining, for an accurate pathologic assessment.2 For pancreatic 
neuroendocrine tumors, it is important to obtain a histologic 
core to determine the mitosis count and Ki-67 index, which are 
important prognostic factors.3 Therefore, various types of needles 
have been developed to obtain adequate core tissue samples to 
conduct a further histologic evaluation and improve the diagnos-
tic yield.4–8 In addition, many techniques and devices for EUS-
guided tissue acquisition and handling methods of obtained tissue 
have been introduced, and clinical studies have been conducted 
to prove their efficacy.9–11 Methods for the on-site evaluation of 
sample adequacy, such as rapid on-site evaluation (ROSE) by a 
cytopathologist and macroscopic on-site evaluation (MOSE) by 
an endoscopist, have been introduced to confirm whether an ob-
tained sample is adequate for interpretation, and several supple-
mentary methods have also been introduced in sample handling 

to increase sample adequacy.12,13 In this review, various types of 
needles for EUS-guided tissue acquisition, sampling techniques 
for better diagnostic yield, and methods for processing obtained 
samples are discussed.

Needles for EUS-Guided Tissue Acquisition

Conventional needles

At first, all EUS-FNA needles had a similar basic design for a 
cytopathological diagnosis only. About a decade ago, new needles 
designed to obtain core tissue with preserved tissue architecture 
for histologic evaluations and molecular profiling were devel-
oped.14 The names of the biopsy needles currently in use and their 
features are described in Table 1. By using a biopsy needle, it is 
theoretically possible to obtain a core tissue sample that can be 
identified by gross inspection, which is expected to reduce the 
number of needle passes and increase the diagnostic yield with-
out ROSE. However, in real-world clinical practice, the shape and 
material of the aspiration needle have been developed together, so 
that sufficient core tissue can also be obtained with the aspiration 
needle. Since reverse-bevel biopsy needles showed only minimal 
benefits in tissue acquisition, antegrade-bevel biopsy needles were 
introduced to obtain a larger amount of tissue because they hold 
the tissue while pushing the needle forward, which is the most ef-
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fective movement during the procedure.15 Biopsy needles showed 
better diagnostic adequacy and accuracy, with fewer needle pass-
es in solid gastrointestinal lesions, but not in solid pancreatic le-
sions.16 Franseen and fork-tip biopsy needles have been compared 
in a meta-analysis, which found that both Franseen and fork-tip 
needles demonstrated a similarly high diagnostic yield of over 
90%, with comparable adverse events.17

Interestingly, a recent meta-analysis compared the accuracy of 
needles in solid pancreatic masses according to the needle shape.18 
In 16 randomized controlled trials with 1,934 patients, Franseen, 
Menghini-tip, reverse-bevel, antegrade-bevel, and fork-tip needles 
were compared with respect to the diagnostic performance us-
ing FNA as reference values. Among them, Franseen and fork-
tip needles, particularly those of a 22-gauge size, showed the best 
results in diagnostic accuracy and sample adequacy.

Regarding needle size, a systematic review with a network 
meta-analysis was performed, and no specific gauge was superior 
among 19-, 22-, and 25-gauge needles in terms of diagnostic ac-
curacy, sample adequacy, and histologic core procurement; how-
ever, these results were based on low-quality evidence.19 Nonethe-
less, 25-gauge needles seem to be more convenient to handle, and 
they are especially useful when there is acute angulation to access 

the lesion, as is the case for lesions in the uncinate process or me-
dial aspect of the pancreas head.20 A previous meta-analysis sug-
gested that 25-gauge needles were more sensitive than 22-gauge 
needles for diagnosing solid pancreatic masses because 25-gauge 
needles retrieve less bloody aspirate and show better handling in 
needle passage and actuation.20 However, in real clinical practice, 
when 25-gauge needles are used, it is often not easy to push out 
the obtained tissue by reinserting the stylet. In addition, recent 
developments in needles have made them more flexible, and the 
advantages of the 25-gauge needle have been diluted because the 
diagnosis is usually made based on a biopsy specimen rather than 
cytology. The use of 19-gauge needles is limited because of their 
stiffness, but these large-bore needles seem to be useful for estab-
lishing organoids with tissues obtained through EUS or perform-
ing molecular profiling for precision medicine.

New concepts of needles

New needle concepts, including EUS-guided through-the-
needle (TTN) microforceps and confocal laser endomicroscopy 
(CLE), have been introduced.21–25 These devices are usually used 
for the diagnosis of pancreatic cysts, for which conventional EUS-

Table 1 A List of Needles for EUS-Guided Tissue Acquisition 

Product Company Shape Needle size (gauge)

ProCore Cook Menghini-tip with core trap 19, 20, 22, 25

Acquire Boston Scientific Franseen 22, 25

EZ Shot 3 Plus Olympus Menghini-tip with side hole 19, 22

SharkCore Medtronic Fork-tip 19, 22, 25

EUS, endoscopic ultrasound.
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FNA and cyst fluid analysis have low diagnostic yield.26 The ma-
jor limitations of EUS-FNA result from obtaining insufficient fluid 
for biochemical analysis and inadequate sample cellularity.27,28

TTN biopsy demonstrated a higher diagnostic yield for pan-
creatic cysts than EUS-FNA; however, concerns about safety is-
sues have been raised, including bleeding, leakage, infection, and 
pancreatitis.29,30 A recent multicenter retrospective analysis of 506 
patients who underwent TTN biopsy with microforceps revealed 
that the incidence of adverse events was 11.5%, and intraductal 
papillary mucinous neoplasms sampled with multiple microfor-
ceps passes were classified as being at high risk for adverse events 
(28%).31 Therefore, the risk-benefit balance of TTN biopsy should 
be carefully considered, and TTN biopsy should be performed in 
selected patients.

Needle-based CLE allows for a real-time in vivo microscopic 
evaluation of epithelial and vascular patterns of the cyst wall, 
with studies demonstrating better diagnostic accuracy than EUS 
with cyst fluid analysis for the differential diagnosis of pancre-
atic cysts.28,32,33 CLE uses an intravenous fluorophore, fluorescein, 
and a fiber-optic confocal laser to achieve higher magnification 
and reveal cellular and subcellular structures in the epithelium.34 
The CLE probe can be advanced through a 19-gauge needle into 
pancreatic cysts or parenchyma. In a meta-analysis of 10 studies 
with 547 individuals with pancreatic cysts, the pooled sensitivity 
and specificity were 90% and 96%, respectively.35 The overall rate 
of CLE-related adverse events was 2.7%, including pancreatitis, 
bleeding, pruritus, infection, and peri-pancreatic fluid collec-
tion34,35 Besides pancreatic cysts, attempts have been made to use 
CLE to differentiate pancreatic adenocarcinoma, neuroendocrine 
tumors, chronic pancreatitis, and autoimmune pancreatitis, but 
the images of solid lesions are static and image interpretation is 
challenging.34,36,37

TTN biopsy and CLE were compared in the diagnosis of pan-
creatic cysts, and CLE showed higher diagnostic yield than biopsy 
(85% vs. 74%, P < 0.0001), while sensitivity (80% vs. 86%) and 
specificity (80% vs. 83%) were comparable in a recent meta-
analysis.38

Technical Issues during EUS-Guided Tissue Acquisition

Technical factors associated with diagnostic accuracy

Endoscopists have adopted diverse techniques to improve the 
diagnostic accuracy of EUS-guided tissue acquisition, and numer-
ous studies have tried to determine the ideal techniques for EUS-
guided tissue acquisition. The following technical factors can 
be considered in EUS-FNAB: suction or non-suction, applying 
capillary sampling with a stylet slow-pull, the number of to-and-
fro movements or actuations, the door-knocking technique, the 
fanning technique, the torque technique, the number of needle 
passes, and the use of a stylet.39–41 

The basic maneuvers in EUS-FNAB are as follows. The echo-
endoscope should be positioned as straight as possible to facilitate 
needle insertion. Before puncture, the target lesion should be care-
fully inspected and located at the 5- to 7-o’clock position on the 
real-time EUS image. Color Doppler should be applied to avoid 
puncturing intervening vessels. Excessive movements of the tip of 
echoendoscope or the elevator should be avoided, as they increase 
the resistance to movements of the needle.

Although applying suction seems to lead to a better diagnos-
tic yield rate than non-suction, the value of suction may vary 
depending on the target site and disease.9,11 There seem to be little 
difference in diagnostic adequacy between suction and capillary 

sampling with the stylet slow-pull technique.11,42 The accumula-
tion of blood and blood contamination can reduce the specimen 
quality and result in blood clogging inside the needle lumen.11,43,44 
A recent prospective study investigated the optimal number of 
needle actuations to obtain adequate cellularity with minimiz-
ing blood contamination. Significant blood contamination was 
observed with 20 actuations compared with 15 actuations when 
suction was applied, whereas 10 actuations showed a lower diag-
nostic yield than 15 or 20 actuations when suction was not ap-
plied.11 Therefore, 15 actuations were recommended for EUS-FNA 
of solid pancreatic masses. 

The use of a stylet with EUS-FNA did not increase the diag-
nostic yield, whereas stylet use was associated with poorer sample 
quality in a previous prospective study.45 Expressing aspirate from 
the needle by air flushing seems to be preferred over reinserting 
the stylet because bloodiness was lower with air flushing than 
with stylet reinsertion. Moreover, expressing the aspirate by air 
flushing is easier and safer.9

Needle priming with saline or heparin was introduced to re-
duce blood clogging.43,46 These techniques provide better cellular-
ity and specimen adequacy without negative effects on histologic 
interpretation and immunohistochemical staining.

The needle speed of actuations during EUS-FNA may be re-
lated to the diagnostic yield. Faster movement of the needle may 
increase tissue fracture and cause more cell detachment.47 Mukai 
et al48 introduced the “door-knocking technique,” named for the 
sound made by the needle handle hitting the stopper during a 
quick and forceful forward push. Although this technique did not 
improve the accuracy of the histologic diagnosis, a larger amount 
of tissue acquisition was possible. When the actual needle speed 
was measured during EUS-FNA, the diagnostic accuracy and 
specimen quality were higher when the acceleration was greater 
than 9.8 m/s2.49 The fanning technique, which is defined as us-
ing the needle to sample multiple areas within a lesion using the 
up/down knob of the echoendoscope, has been introduced, and 
showed superiority because fewer passes were required to confirm 
the pathologic diagnosis.50 The torque technique, which is defined 
as applying torque by twisting the shaft of the echoendoscope 
in the clockwise or counterclockwise direction without using the 
left/right control knob during EUS-FNAB, was evaluated in a pro-
spective study of 124 patients with solid pancreatic masses, and 
the authors concluded that the torque technique enabled better 
histologic core procurement.41 

The minimum number of needle passes to obtain adequate 
tissue is critical. The more needle passes are performed, the 
higher the diagnostic yield could be; however, performing nu-
merous needle passes requires a long time and the probability of 
procedure-related adverse events might increase. In addition, if 
the number of passes is increased beyond a certain threshold, the 
diagnostic yield may not further increase, and time can be wasted 
unnecessarily. In the absence of ROSE, at least 5 to 7 passes were 
suggested for EUS-FNA of pancreatic malignancies.51,52 However, 
in a recent prospective study of 239 patients with solid pancreatic 
masses, performing more than four passes of EUS-FNA did not 
increase the sensitivity of detection.39 With the development of 
biopsy needles, as MOSE is widely implemented, the number of 
needle passes could be further reduced.

Targeting under contrast-enhanced harmonic EUS 

Because 80% to 100% of false-negative cases in EUS-FNA are 
correctly classified by contrast-enhanced harmonic EUS (CEH-
EUS), CEH-EUS plays a complementary role in the diagnosis of 
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solid pancreatic masses.53 In addition, CEH-EUS has been pro-
posed as a method to improve lesion targeting because the con-
trast agent may enable better recognition of the puncture site by 
helping to avoid the necrotic area.53,54 EUS-FNAB under CEH-EUS 
may improve the diagnostic accuracy and adequacy with fewer 
needle passes.55–58

ROSE versus MOSE 

The presence of a cytopathologist to perform ROSE during 
EUS-FNA can improve the diagnostic performance by reducing 
inadequate samples and the need for additional passes.14,59–61 How-
ever, ROSE requires medical resources, including an on-site cyto-
pathologist, as well as additional time and costs. A recent study 
reported the efficacy of MOSE for ensuring core tissue acquisition 
with a minimal number of needle passes and a high diagnostic 
yield.62 A macroscopic visible core larger than 4 mm is an indica-
tor of an adequate sample that improves diagnostic accuracy.63 A 
recent international, multicenter, prospective, randomized clinical 
trial revealed that EUS-FNAB with MOSE required fewer needle 
passes to achieve an adequate diagnostic yield similar to that of 
the conventional method.64 MOSE should be implemented in real-
world practice in terms of obviating the need for an on-site cyto-
pathologist and saving additional costs and time for slide staining 
and interpretation.7

Adverse events and contraindications of EUS-guided tissue 
acquisition

EUS-guided tissue acquisition is minimally invasive and safe, 
with an adverse event rate ranging from 0% to 3%.65 Adverse 
events include abdominal pain, acute pancreatitis, perforation, in-
fection, bleeding, and tumor seeding. Most unpredictable adverse 
events are mild in severity and self-limiting.65 Although there is a 
concern that biopsy needles may cause more bleeding, it has been 
reported that there was no difference in the risk of adverse events, 
including bleeding, because biopsy needles could reduce the num-
ber of needle passes. A recent meta-analysis showed no difference 
in the incidence of adverse events between aspiration needles and 
the biopsy needles (1.8% vs. 2.3%, respectively; pooled risk ratio, 
1.13; 95% confidence interval, 0.40–3.22; P = 0.64).66

There is no absolute contraindication to EUS-guided tissue 
acquisition, but caution is required in cases of cardiopulmonary 
instability, bleeding tendency with coagulopathy or thrombocyto-
penia, and recent use of anticoagulants or antiplatelets.67

Optimal Handling of the EUS-Guided Obtained Sample

It is important to obtain an adequate tissue sample, but it is 
also very important to process the obtained tissue appropriately to 
make a pathological interpretation. In addition to the pathological 
analysis, the detection of molecular alterations may be helpful for 
improving diagnostic accuracy. 

Conventional smear versus liquid-based cytology

A conventional smear with Papanicolaou or Diff-Quick stain 
is the usual method for the cytologic preparation of EUS-FNA 
specimens. However, conventional smears have problems such as 
bloody smears, dry artifacts, crushing artifacts, and thick tissue 
fragments, which obscure cytologic features and lead to a subop-
timal diagnosis.12,55 Therefore, liquid-based cytology was intro-
duced to solve the problems of conventional smears.68 In liquid-
based cytology with EUS-FNA specimens, the ThinPrep method 
and SurePath system have mainly been studied.12 Prior studies 
comparing the ThinPrep method with conventional smears found 
that conventional smears were superior to ThinPrep in diagnos-
ing pancreatic malignancies.69–71 However, the SurePath system 
showed similar diagnostic performance to conventional smears 
and reduced the blood background, thereby facilitating cell ob-
servation and justifying the use of liquid-based cytology for EUS-
FNA over conventional smears when available.12

Identification of molecular alterations

Molecular diagnostic techniques can enhance the diagnostic 
yield through various types of immunohistochemical staining and 
molecular analyses.72–74 EUS-guided tissue acquisition can provide 
cancer DNA for sequencing analysis. Although target sequencing 
is feasible even with cytology specimens, it can be difficult to pro-
ceed with whole-genome or whole-exome sequencing if the ob-
tained samples are too small.75 EUS-guided tissue acquisition us-
ing a large-bore needle is more likely to achieve successful next-
generation sequencing.76 A recent randomized crossover clinical 
trial reported that the specimen adequacy for genetic profiling 
was significantly better with biopsy needles than with aspiration 
needles.77

Additional genetic profiling using EUS-guided obtained sam-
ples, including KRAS, TP53, SMAD4, and CDKN2A/P16 mutation 
analysis, can improve the diagnostic accuracy of pancreatic can-
cer.14 Ancillary testing, including KRAS, GNAS, HVL, and CTNB1 
may be helpful in the differential diagnosis of pancreatic cysts.78 
Besides diagnosis, molecular profiling of an obtained tissue sam-
ple can predict the prognosis and help determine the management 

Table 2 A Summary of Optimal EUS-Guided Tissue Acquisition and Processing Methods 

Needle shape Franseen, fork-tip, and Menghini-tip needles are all recommended.
Through-the-needle microforceps are promising for pancreatic cysts.

Needle gauge A 22-gauge needle is recommended considering its convenience and clinical evidence.
The 19-gauge needle seems to be in the spotlight again because more tissue is better for genetic profiling.

Tissue acquisition technique Rapid insertion and slow withdrawal of needle under negative suction, 15 times.
The fanning technique or torque technique.

Confirmation of adequacy of  
the obtained sample

Macroscopic on-site evaluation to confirm histologic core.

Cytology preparation Liquid-based cytology (SurePath).

Ancillary test Addition of molecular profiling.

EUS, endoscopic ultrasound.
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plan, such as using PARP inhibitors, immune checkpoint inhibi-
tors, TRK inhibitors, or RAS GTPase family inhibitors targeting 
KRASG12C.79–82

Conclusions

It will be crucial to obtain a larger amount of high-quality 
tissue in line with current medical trends, which are progressing 
toward precision medicine and targeted therapy. Table 2 summa-
rizes the EUS-guided tissue acquisition and processing methods 
that can produce the highest diagnostic performance based on the 
results of previous clinical studies and meta-analyses. 
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